This function produce two-sample t-test (two-tailed with confident interval at 0.95) results for multiple sub-groups and provides with a nice output in a table format. It can also add adjusted p values for multiple comparison issue.
t_test_two_sample(data, x, y, paired = FALSE, p_adjust = "bonferroni")
data | A grouped data frame. It should be grouped by the intended sub-groups which you want to do the same t-test. |
---|---|
x | Column name of the variable which contains data values that you want to test (see t.test and details). |
y | Column name of the variable which contains data values of group assignments for the test values (see t.test and details). |
paired | a logical indicating whether you want a paired t-test. |
p_adjust |
|
A data.frame
with the t-statistics table
consisting of characters. The columns that are always present are:
group variable(s)
, tvalue
, df
(degrees of freedom), p
, and p_adjustmethod(s)
.
t_test_two_sample(color_index_two_sample, x = "color_effect", y = "group", paired = TRUE)#> Warning: The `t_test_two_sample()` function expects a grouped data frame (i.e., from `dplyr::group_by()`). Returning statistics for the overall comparison#> Warning: `...` must not be empty for ungrouped data frames. #> Did you want `data = everything()`?#> # A tibble: 1 x 4 #> tvalue df p p_bonferroni #> <dbl> <dbl> <dbl> <dbl> #> 1 4.44 231 0.0000142 0.0000142# use bonferroni and fdr method for adjusted p values. library(magrittr) color_index_two_sample %>% t_test_two_sample( x = "color_effect", y = "group", paired = TRUE, p_adjust = c("bonferroni","fdr") )#> Warning: The `t_test_two_sample()` function expects a grouped data frame (i.e., from `dplyr::group_by()`). Returning statistics for the overall comparison#> Warning: `...` must not be empty for ungrouped data frames. #> Did you want `data = everything()`?#> # A tibble: 1 x 5 #> tvalue df p p_bonferroni p_fdr #> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 4.44 231 0.0000142 0.0000142 0.0000142